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Abstract

A propagation model method for extracting the normal incidence impedance of an acoustic
material installed as a �nite length segment in a wall of a duct carrying a nonprogressive wave
�eld is presented. The method recasts the determination of the unknown impedance as the
minimization of the normalized wall pressure error function. A �nite element propagation
model is combined with a coarse/�ne grid impedance plane search technique to extract the
impedance of the material. Results are presented for three di�erent materials for which the
impedance is known. For each material, the input data required for the prediction schemewas
computed from modal theory and then contaminated by random error. The �nite element
method reproduces the known impedance of each material almost exactly for random errors
typical of those found is many measurement environments. Thus, the method developed
here provides a means for determining the impedance of materials in a nonprogressive wave
environment such as that usually encountered in a commercial aircraft engine and most
laboratory settings.

1 Introduction

The design of increasingly e�ective and e�cient duct treatments for acoustic noise sup-
pression continues to be a critical consideration in the design of environmentally acceptable
aircraft propulsion systems. To achieve the full potential of duct treatments in future aircraft
engines, it will be necessary to maintain the target impedances of acoustic treatments near
their optimum values. A continuing measurement problem in treatment technology is the
accurate determination of normal incidence impedance of acoustic material in grazing 
ow
environments. Methods for determining the normal incidence impedance in this environment
fall into three categories, \T-tube" method (ref. [1]), in-situ method (refs. [2, 3]), and the
propagation model method. The \T-tube" and \in-situ" methods have several drawbacks
that are discussed at length in ref. [4]. These two measurement methods do, however, serve
as useful complements to the \propagation model " method, which is the subject of this
paper.

Propagation model methods for evaluating the acoustic impedance of a material are pop-
ular because of their convenience. The conventional method involves measuring the sound
attenuation properties in a waveguide lined with the acoustic material over a su�cient length
to be e�ectively in�nite. This data is then used with the solution to the wave equation in an
in�nite waveguide to establish the impedance of the material. The evolution of waveguide
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models for this purpose began over 20 years ago with a uniform mean 
ow model(ref. [4]).
For this case, an analytical expression for the impedance of the material was derived us-
ing known transcendental functions and the measured axial wavenumber. Validation of the
model in zero 
ow (i.e., grazing incidence sound only) was achieved by demonstrating that it
reproduced the measured normal incidence impedance of a test panel. Waveguide methods
were later extended to rectangular ducts with shearing mean 
ows in one cross sectional
direction (refs. [4, 5]). The method presented in ref. [5] was extended to include mean 
ow
shear in two cross sectional directions in ref. [6]. Both the one and two-dimensional sheared

ow models developed in refs. [5] and [6] were validated with measured data in ref. [7].

In�nite waveguide models are applicable, in a very straightforward manner, to situations
for which a single progressive mode propagates within the waveguide containing the unknown
material. However, many conventional liner concepts generate more complex acoustic �elds.
Thus, measured data must now be interpreted as the superposition of many propagating
modes (i.e., multi-modal e�ects generated by installation of the test specimen and manu-
facturing tolerances). Broadband liners currently under study contain variable impedance
properties and produce multiple modes in the waveguide. The current research e�ort was
motivated by the shortcomings of the current methodology for determining the normal in-
cidence impedance in these more realistic situations. The method developed here uses a
propagation model based upon a �nite element technique for determining normal incidence
impedance from measured wall pressure data. This allows a determination of the impedance
of materials in nonprogressive acoustic wave �elds contaminated with multi-modal e�ects
and re
ections. Although the analysis of this paper assumes a two-dimensional duct without
mean 
ow, it may be extended to three dimensions and to mean 
ows with shear.

The remainder of this paper is organized into seven sections. The following section 2
describes the physical problem and coordinate system used in the study. Section 3 presents
the governing equation and boundary conditions that are solved to obtained the unknown
impedance of the acoustic material. Section 4 describes the propagation model (i.e., a linear
�nite element method). Measured data was not available as input to the model. Therefore,
multi-modal analysis was used to simulate the necessary input. This is discussed in section 5.
The unknown impedance of the material is obtained by minimizing the di�erence between
the known and numerically computed wall pressure. The minimization is achieved by a
coarse/�ne grid search technique in the complex impedance plane. This is the subject of
section 6. Results of impedance predictions for known materials are presented for wave
�elds containing nonprogressive waves in section 7. Conclusions relevant to this paper are
presented in section 8.

2 Description of the Physical Problem

Figure 1 shows a schematic of the two-dimensional duct used in this study. The amplitudes
of right and left moving acoustic waves decay as shown schematically in the �gure. The
axial and transverse directions are denoted by x and y, respectively. The duct is L units
long with the source and exit planes located at x = 0 and x = L, respectively. Inputs at the
source and exit planes are the source pressure, ps(y), and the normalized exit impedance,
�exit(y), respectively. Throughout this work all impedances are normalized with respect to
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the characteristic impedance of the medium in the duct. The upper wall of the duct is
rigid. There are m points located at x = x1; x2; x3 . . .xm along the upper wall, at which the
acoustic pressures are known. The sound absorbing material is assumed to be a perforate
over honeycomb and constitutes the bottom wall. This material is L units long and is
assumed to be point (locally) reacting (i.e. acoustic waves propagate through it normal to
the faceplate). The sound absorbing material has an unknown normalized impedance �(x), as
shown. The problem at hand is to determine the impedance of the material from the known
data. It should be noted, as suggested by �gure 1, that the math model discussed here is
limited to a 2-D description which approximates a three-dimensional 
ow impedance tube.
Such 
ow impedance tube apparatuses can be used to obtain the unknown normal incidence
boundary condition from a knowledge of the source pressure, ps(y), exit impedance, �exit(y),
and upper wall pressures. This method of measurement has been traditionally called the
\waveguide method". It should be noted that this paper will use analytically based input
data to determine the normal incidence impedance, since measured data was not available.

3 Governing Equation and Boundary Conditions

Steady-state acoustic pressure waves, propagating within the duct shown in �gure 1 satisfy
the Helmholtz equation

@2p(x; y)

@x2
+
@2p(x; y)

@y2
+ k2p(x; y) = 0 (1)

where k is the free space wavenumber, k = 2�f
c
, f is the frequency in Hertz, and c is the

sound speed in the duct. Before a solution to the acoustic �eld can be obtained and the
unknown impedance extracted, boundary conditions must be prescribed.

Along the source plane of the duct, x = 0, the acoustic pressure is known

p(0; y) = ps(y) (2)

The boundary condition along the rigid upper wall is equivalent to the requirement that the
gradient of acoustic pressure normal to the wall vanishes

@p(x;H)

@y
= 0 (3)

At the duct termination, x = L, the ratio of acoustic pressure to the axial velocity must
equal the known exit impedance, �exit(y)

@p(L; y)

@x
=
�ikp(L; y)

�exit(y)
(4)

Finally, the lower wall boundary is assumed locally reacting, so that

@p(x; 0)

@y
=

ikp(x; 0)

�(x)
(5)

When the impedance �(x) is known, equations (1)-(5) constitute a well posed boundary value
problem that can be solved to determine the sound �eld within the duct. Exact solutions
to this problem are not available for a general set of input data; therefore, a computational
method is required to obtain the solution to equations (1)-(5).

3



4 Duct Propagation Model

The computational method chosen to solve equation (1), coupled with the boundary condi-
tion equations ((2)-(5)), is a Galerkin �nite-elementmethod. Details on the method are given
in several texts (refs. [8, 9]), and only su�cient detail is presented here for continuity. When
applied to the current acoustic problem, the �nite-element method may be interpreted as an
approximation of the continuous acoustic �eld as an assemblage of rectangular elements as
illustrated in �gure 2. Here it is assumed that there are N nodes in the axial and M nodes
in the transverse directions of the duct. A typical rectangular element, [I; J ], is shown in
�gure 3. Each element consists of four local node numbers labeled 1, 2, 3 and 4, respectively.
Each element is considered to have width a = (xI+1 � xI) and height b = (yJ+1 � yJ ) as
shown. The objective of the method is to obtain the unknown acoustic pressure at the nodes
of each of the (M � 1)(N � 1) elements.

Galerkin's �nite element method is employed to minimize the �eld error. It should be
noted that the �eld error is distinct from the wall error function, which is used later to
extract the unknown impedance. De�ne the �eld error function as

E(x; y) =
@2p(x; y)

@x2
+
@2p(x; y)

@y2
+ k2p(x; y) (6)

Within each element p(x; y) is represented as linear combination of four functions, N1; N2; N3

and N4 which comprise a complete set of basis functions

p(x; y) = N1(x; y)p1+N2(x; y)p2+N3(x; y)p3+N4(x; y)p4 (7)

N1(x; y) = [1� (x�xI)
a

][1� (y�yJ )
b

]; N2(x; y) = [ (x�xI)
a

][1� (y�yJ )
b

]

N3(x; y) = [ (x�xI)(y�yJ )
ab

]; N4(x; y) = [1� (x�xI)
a

][y�yJ
b
]

(8)

in which pm is the values of p(x; y) at local node m. The variable impedances �exit(y) and
�(x) are represented in a similar manner along each boundary element

�exit(y) =

"
1� (y � yJ)

b

#
�exit(yJ)

�
y � yJ

b

�
�exit(yJ+1)

�(x) = [
1� (x� xI)

a
]�(xI) +

(x� xI)

a
�(xI+1) (9)

In an ideal sense, the solution to the sound �eld is obtained when the �eld error, E(x; y),
is identically zero at each point of the domain. This is approximately achieved by requiring
that the �eld error function be orthogonal to each basis function Nm(x; y). Contributions to
the minimization of the �eld error function from a typical element areZ xI+1

xI

Z yJ+1

yJ

ENIdydx =
Z xI+1

xI

Z yJ+1

yJ

"
@2p[I;J]

@x2
+
@2p[I;J]

@y2
+ k2p[I;J]

#
NIdydx (10)

The second derivative terms in equation (10) are integrated by parts in order that the linear
basis functions can be usedR xI+1

xI

R yJ+1
yJ

ENIdydx = �
R xI+1
xI

R yJ+1
yJ

h
@p[I;J]

@x
@NI

@x
+ @p[I;J]

@y
@NI

@y
� k2p[I;J]NI

i
dydx

+
R yJ+1
yJ

[@p
[I;J](L;y)
@x

NI(L; y)�
@p[I;J](0;y)

@x
NI(0; y)]dy

+
R xI+1
xI

[@p
[I;J](x;H)

@y
NI(x;H)� @p[I;J](x;0)

@y
NI(x; 0)]dx

(11)
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Substituting the wall and exit boundary condition into the line integrals in (11) gives

R xI+1
xI

R yJ+1
yJ

ENIdydx = �
R xI+1
xI

R yJ+1
yJ

h
@p[I;J]

@x
@NI

@x
+ @p[I;J]

@y
@NI

@y
� k2p[I;J]NI

i
dydx

+
R yJ+1
yJ

[ ikp
[I;J](L;y)
�exit(y)

NI(L; y) +
@p[I;J](0;y)

@x
NI(0; y)]dy

�ik
R xI+1
xI

[p
[I;J](x;0)
�(x) NI(x; 0)]dx

(12)

where the line integrals in equation (12) are evaluated only for elements which lie along
the boundary of the duct. The contribution to the minimization of the �eld error for each
element is expressed in matrix form as

Z xI+1

xI

Z yJ+1

yJ
ENIdydx = [A[I;J]]f�[I;J]g (13)

where [A[I;J]] is a 4x4 complex matrix for each element [I; J ], and f�[I;J]g is a 4x1 column
vector containing the unknown acoustic pressure at the four nodes of the element. The
coe�cients in the local sti�ness matrix, [A[I;J]], were computed in closed form.

Assembly of the global equations for the computational domain is a basic procedure in
the �nite element method. Appropriate shifting of rows and columns is all that is required
to add the local element matrix, [A[I;J]], directly into the global matrix, [A]. Assembling the
elements for the entire domain results in a matrix equation of the form:

[A]f�g = fFg (14)

where [A] is a complex matrix whose order is MN , and f�g and fFg are MNx1 column
vectors. The vector f�g contains the nodal values of the unknown acoustic pressure and fFg
is the zero vector. It is necessary to apply the source pressure condition to this system of
equations before a solution can be obtained. Satisfying the noise source boundary condition
consists simply of setting all nodal values of acoustic pressure at the source plane (x = 0) to
the known value of source pressure, ps(y). Thus inserting these conditions into the assembled
global matrix equation (14), introduces nonzero elements into the �rst 2M components of
fFg. Further details on imposing source conditions are described elsewhere (refs. [8, 9]).

The global matrix [A] generated by Galerkin's Method following application of the source
conditions is a complex matrix. Fortunately, owing to the discretization scheme used, it will
also be block tridiagonal. The structure of matrix [A] prior to imposing boundary conditions
is shown in �gure 4, where the superscript T denotes matrix transpose. Note that [A] is a
square symmetric block tridiagonal matrix whose order isMN . This global matrix contains a
number of major blocks (AI ; BI) which are themselves square and tridiagonal as shown in the
�gure. The diagonal major blocks, AI are also symmetric. Much practical importance arises
from this symmetric structure as it is convenient for minimizing storage and maximizing
computational e�ciency. Special matrix techniques exist for a solution of this structure
following application of source conditions1. All computation and storage is performed only
on the lower triangular portion of the matrix [A].

1Gaussian elimination with partial pivoting and equivalent row in�nity norm scaling is used to reduce

the rectangular system to upper triangular form. Back substitution is then employed to obtain the solution

for the acoustic pressure at the NM node points
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5 Data Input to Duct Propagation Model

Three sets of boundary data are required in addition to the rigid upper wall condition, in
order for the duct propagation model to uniquely determine the upper wall pressure. The
foregoing equations make use of this unique relationship between the upper wall pressures,
p(xI ;H), and the following three sets of data

1. The source plane pressure, ps(y)

2. The exit plane impedance, �exit(y)

3. The lower wall impedance function, �(x)

If any two and the upper wall pressures are known, the remaining can be determined. Here
we are seeking the unknown impedance function of the lower wall, �(x). It will be determined
by specifying the upper wall pressures, the source pressure and exit impedance.

Experimental data were not available for input to the �nite element duct propagation
model. Thus, in this e�ort, we assume a uniform liner impedance of the bottom wall, and
use multi-modal analysis to determine the upper wall pressures, the source pressure, and exit
impedance. To begin, the conventional modal solution in the duct of �gure 1, for a constant
impedance at the lower wall, is

p(x; y) =
nmodesX
n=1

[Ane
�iknx +Bne

iknx]pn(y) (15)

pn(y) = cos(�ny) + tan(�nH) sin(�ny) (16)

k2n = k2 � �2n (17)

� =
ikH

�nH tan(�nH)
(18)

Here, nmodes is the number of modes, An and Bn are the chosen mode amplitude coe�cients
of the right and left moving acoustic waves in the duct, respectively, and the eigenvalues,
�n, are obtained by solving the transcendental equation (18).

The source pressure and exit impedance used as input data here, are obtained by sub-
stituting the series in equation (15) (i.e., with chosen values of An; Bn and nmodes) into
equations (2) and (4), respectively, to obtain

ps(y) =
nmodesX
n=1

[An +Bn]pn(y) (19)

�exit(y) =
�k

Pnmodes
n=1 [Ane

�iknL +Bne
iknL]pn(y)Pnmodes

n=1 kn[BneiknL �Ane�iknL]pn(y)
(20)

In order to obtain the known upper wall pressure that is required to extract the unknown
impedance, the series in (15) is evaluated at the m axial locations along the upper wall

p(xI ;H) =
nmodesX
n=1

[Ane
�iknxI +Bne

iknxI ]pn(H) (21)
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6 Extraction of the Unknown Impedance

The goal of the impedance extraction method described in this work is to determine the
unknown impedance, �(x), of an acoustic material from the data input. The procedure is to
numerically determine the impedance function �(x), such that the pressure along the top wall
reaches its known value at each of them points. The procedure consists of repeatedly cycling
through the solution to the boundary value problem (equations (1)-(5)), and obtaining a set
of upper wall pressures for each impedance function. As each new set of wall pressures is
computed, it is compared to the known values until convergence is achieved. Convergence
of the procedure is guaranteed, since the boundary value problem is well-posed.

The idea is best illustrated by considering a constant impedance, �. We de�ne the
unknown impedance as

� = � + i� (22)

where � is the resistance and � the reactance. Resistance values are positive whereas reac-
tance values span the real axis

0 � � � 1; �1 � � � 1 (23)

It should be apparent that searching the entire upper half plane of the resistance/reactance
space for the unknown impedance is impractical. Thus, we introduce the tranformation

� = cot(kd); 0 � kd � � (24)

and search for the unknown impedance in the (�; kd) plane, where � is limited to 0 � � � �max.
Rules for selecting �max will be discussed later. It should be noted that equations (22) and
(24) represent the impedance model for many perforates over honeycomb used in current
aircraft engines and the parameter d is the backing depth of the perforate (ref. [10]).

We now divide the complex plane (�; kd) into IMAX evenly spaced intervals in the �
direction and JMAX evenly spaced points in the kd direction, as shown in �gure 5. The
increment spacing �� and k�d are

�� =
�max

IMAX � 1
; k�d =

�

JMAX � 1
(25)

Thus a point �IJ in the uniform impedance grid is

�IJ = �I + i�J ; �I = (I � 1)��; �J = cot (J � 1)k�d (26)

We will establish a rule of thumb for determining IMAX, and JMAX in the next section.
We now de�ne the global normalized wall error function at a point (I; J) in the impedance
plane. Let � denote the impedance of the unknown material. If the known upper wall pres-
sures corresponding to � are p(xn;H) and those computed from the �nite element solution
with �IJ are p(xn;H), then a measure of the closeness of �IJ to � is given by the normalized
wall error function, EW (�IJ )

EW (�IJ) =
EW (�IJ)

Emax

(27)
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EW (�IJ ) =
1

m

mX
n=1

j p(xn;H)� p(xn;H) j (28)

in which j j denotes the absolute value of a complex quantity, Emax is the maximum value of
EW for all points �IJ in the impedance grid, and m is the number of known wall pressures.

Determining the unknown impedance of the material is now recast as a minimization
problem. Thus, � should be chosen such that EW (�) is a global minimum. The global
minimum is obtained using a two-step method. First, we use a coarse grid in the impedance
plane and tabulate the normalized wall error function to determine the location in that grid
of the minimum point (�1; kd1). We use a �ne grid centered about (�1; kd1), where �� and
�kd are now much smaller. The location of the minimum point of the �ne grid corresponds
to the unknown impedance.

7 Results

A computer code implementing the impedance extraction method has been developed. The
�nite element matrix equation (14) is solved using a routine from the highly developed soft-
ware package \Lapack,"(ref. [11]) and minimization of the normalized wall error function is
performed internally by an in-house computer code. The unknown impedance, �, is returned
by the in-house code. Results were computed using a Dec-Alpha work station and were not
computationally intensive (i.e., requiring only 0.5 seconds of CPU time for each point in the
impedance grid). In this section, the integrity of the impedance extraction method is tested
on three materials for which the impedance, �, is known. The �rst two are materials for
which � = 1 + 1i and � = 3 + 2i, respectively. The last material is a rigid wall, for which
the impedance approaches 1 +1i, which corresponds to an admittance of, 0 + 0i. Thus,
for convenience, analysis of the rigid wall case is conducted in the admittance plane.

Input data required to extract the impedance of each liner was obtained by solving
equation (18) with the known � and calculating the source pressure and exit impedance
from equation (19) and (20), respectively. Equation (21) was then evaluated at m evenly
spaced locations to provide the known wall pressure for the wall error function. In an attempt
to determine the e�ects of error in the input data, a number of cases were run with the upper
wall pressure distribution randomly perturbed according to

p̂(xI ;H) = p(xI ;H)Er (29)

where p̂(xI ;H) is the perturbed pressure and Er is the random error. For the cases presented
in this report, the range of random error was set to �0:1 dB, so that

Er = 1 �Nr10
0:1=20 (30)

where Nr is a random number between 0 and 1. The �0:1 dB random error range was not
arbitrarily chosen, but is typical of that experienced in the Langley Grazing Flow Impedance
Tube Facility. For each material, impedance predictions are presented for a single mode
nonprogressive wave �eld (nmodes = 1; A1 = 1:0; B1 = 0:5). The duct geometry for which
calculations were made was chosen to be that of the Langley Flow Impedance Tube Facility
(i.e., H = 2:0 inches, L = 23:0 inches) test section. Results are presented for two source
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frequencies, f=500 Hertz and f=3,000 Hertz. A 231x21 evenly spaced grid is used (N = 231
and M = 21) in the �nite element discretization for all calculations. This grid ensured that
a minimum of ten elements per wavelength was used in the �nite element discretization at
the highest frequency of interest for each of the wave �elds considered.

Numerical experimentation has shown that a 51x31 uniform grid (i.e., IMAX = 51
and JMAX = 31, with �� = k�d = 0:1) is typically su�cient for the coarse grid search
procedure. Note that while this grid covers nearly all possible reactance values, the resistance
only ranges from 0 to 5 (i.e., �max = 5). If larger values of resistance are expected, a larger
value of �max should be used. After the coarse grid procedure has been completed, a �ne grid
search is conducted. Again, numerical experimentation has shown that a 21x21 uniformly
spaced �ne grid (i.e., IMAX = 21 and JMAX = 21, with �� = k�d = 0:01) is su�cient
for convergence to the unknown impedances.

Convergence of the impedance prediction method is best illustrated using contour plots
in the (�; �) plane. Figure 6 shows contour plots of EW (�) for the �ne grid at a frequency
of 500 Hertz. Ten evenly spaced points (i:e:;m = 10) were used to construct the wall error
function. The known impedance is � = 1 + 1i, and the resistance and reactance are plotted
on the horizontal and vertical axes, respectively. The coarse grid contours collapse to a single
point at � = 1:00+0:97i. As can be seen in the �gure 6, the global minimumpoint of EW (�)
for the �ne grid lies within the contour labeled 7. Thus the returned impedance is the value
at the grid point closest to the center of that contour, � = 1:00 + 0:99i. It should be noted
that separate tests were conducted to show that the error is even smaller at � = 1+1i, since
the �ne grid used as a standard in this study did not include this particular impedance as a
point in the grid.

Figure 7 presents a comparison of the known resistance and reactance for the �rst material
(� = � = 1) with the predicted values, for input data with and without random error. The
two plots in the upper half of the �gure were computed at a frequency of 500 Hertz, while
the two in the lower half of the �gure were computed at 3,000 Hertz. The independent
variable for the horizontal axis is the number of evenly spaced input wall pressure points,
m, used to determine the wall error function. Results are shown for m = 5; 10; 46 and 230.
Note that the impedance prediction method does an excellent job of determining the normal
incidence resistance and reactance, with and without random error. Predicted resistance
values are slightly less accurate at the higher frequency for small values of m. Collectively,
these graphs show that the predicted impedance is independent of m. Figure 8 shows similar
results for the second material, whose known resistance and reactance was � = 3, and � = 2,
respectively. Overall trends are consistent with that of �gure 7. The largest error (i.e.,
approximately 4%) occurs in the reactance prediction at 3,000 Hertz for m = 5 when there
is random error.

The third and �nal material was a rigid wall, which was included in this study in an
attempt to cover the realistic range for the majority of grazing incidence impedance mea-
surements. Since the impedance for a rigid wall approaches � =1+1i, it was not feasible
to perform an impedance plane grid search to try to determine the appropriate normal inci-
dence impedance. However, the known admittance, � = 1=� = � + i�, for this case is zero
(� = 0+ 0i). For this reason, an admittance plane grid search was performed for this mate-
rial. A coarse grid search was conducted with �� = �� = 0:1, over ranges of 0 � � � 2 and
�1 � � � 1. A �ne grid search was then conducted with �� = �� = 0:01, over ranges of
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0 � � � 0:2 and �0:1 � � � 0:1. The results are shown in �gure 9. Predicted admittances
are in exact agreement with the known value for each frequency, with and without random
error in the input data.

Impedance predictions were also obtained for each of the two soft materials, but for the
following sound �elds

1. A single mode progressive wave �eld
(nmodes = 1; A1 = 1:0; B1 = 0:0)

2. A multi-modal wave �eld without re
ections
(nmodes = 2; A1 = A2 = 1:0; B1 = B2 = 0:0)

3. A multi-modal wave �eld with signi�cant re
ections
(nmodes = 2; A1 = A2 = 1:0; B1 = 0:5; B2 = 0:0)

Graphical results for these three �elds are not presented for the sake of brevity. However, it
was observed that impedance predictions were in good agreement to the known impedances
using each of these three sound �elds. In fact, when the wall pressure was not subjected
to random error, predicted impedances for each sound �eld was identical to that obtained
for the single mode nonprogressive wave �eld (see �gures 7, 8, and 9). Studies were also
performed for larger random errors. When the random error was increased to a level of
5 dB (well above those typically experienced in normal applications), a weak dependence of
the error in the prediction versus the number of wall pressure points was observed. This
dependence was determined to be a decreasing function of m. Thus, as should be expected,
an increasing number of wall pressure points should be used to increase the accuracy in the
predictions for measurement systems with larger random errors.

8 Conclusions

A coarse/�ne grid impedance plane search technique has been developed for extracting the
unknown impedance of an acoustic material. A main advantage of the method is that
it is applicable to a nonprogressive wave environment, such as that usually encountered in
commercial aircraft engines and most laboratory settings. Although the method as presented
here is restricted to two-dimensional ducts without mean 
ow, it may be extended to three
dimensions and to mean 
ows with shear. Data input for the predictions presented in this
paper were obtained from modal theory, but this data could be replaced with measurements
taken in a grazing 
ow impedance tube with the test specimen installed. Results of this
study show that the method is extremely e�ective in extracting the impedance of a known
material in complicated nonprogressive wave �elds. When there is signi�cant random error
in the input data, a large number of wall data points are required for an accurate impedance
prediction. The method is quite insensitive to random error typical of that found in most
high quality measurement systems. The method has been found to be a simple and powerful
tool for analytically based input data. There is now a need to test the method with measured
data.
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Figure 1: Two dimensional duct and coordinate system with a nonprogressive wave �eld
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Figure 2: Finite element discretization of two dimensional duct
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